The Effects of Adding Reachability Predicates in Propositional Separation Logic
نویسندگان
چکیده
The list segment predicate ls used in separation logic for verifying programs with pointers is well-suited to express properties on singly-linked lists. We study the effects of adding ls to the full propositional separation logic with the separating conjunction and implication, which is motivated by the recent design of new fragments in which all these ingredients are used indifferently and verification tools start to handle the magic wand connective. This is a very natural extension that has not been studied so far. We show that the restriction without the separating implication can be solved in polynomial space by using an appropriate abstraction for memory states whereas the full extension is shown undecidable by reduction from first-order separation logic. Many variants of the logic and fragments are also investigated from the computational point of view when ls is added, providing numerous results about adding reachability predicates to propositional separation logic.
منابع مشابه
Equality propositional logic and its extensions
We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...
متن کاملar X iv : 1 30 7 . 55 92 v 4 [ cs . L O ] 2 6 N ov 2 01 3 Proof Search for Propositional Abstract Separation Logics via Labelled Sequents
Abstract separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are “abstract” because they are independent of any particular concrete memory model. Their assertion languages, called propositional abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theo...
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملUnified Reasoning About Robustness Properties of Symbolic-Heap Separation Logic
We introduce heap automata, a formalism for automatic reasoning about robustness properties of the symbolic heap fragment of separation logic with user-defined inductive predicates. Robustness properties, such as satisfiability, reachability, and acyclicity, are important for a wide range of reasoning tasks in automated program analysis and verification based on separation logic. Previously, su...
متن کاملSOFT TOPOLOGY AND SOFT PROXIMITY AS FUZZY PREDICATES BY FORMULAE OF LUKASIEWICZ LOGIC
In this paper, based in the L ukasiewicz logic, the definition offuzzifying soft neighborhood structure and fuzzifying soft continuity areintroduced. Also, the fuzzifying soft proximity spaces which are ageneralizations of the classical soft proximity spaces are given. Severaltheorems on classical soft proximities are special cases of the theorems weprove in this paper.
متن کامل